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) Pick the following points to map: (1) 0,  ( ) 1,  ( 1) , , :
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Let's invert:  (1
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) (1 )

) Solution satisfying the boundary conditions is:

2
( ) arg 1 arg arg( 1)

) Thus, the solution is 
1 2 1 1

a(z)= rg 1 arg arg 1
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From the picture it is clear that , 2,  therefore
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3) (30pts) Consider a clockwise vortex of strength  centered at xo=2, near a cylindrical 
obstacle of radius 1 centered at the origin (as usual, assume ideal fluid flow): 
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) Apply the Milne-Thompson Theorem, noting that 1,  2 : ( ) log 2 :
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Thus, the image with respect to the cylinder represents two vortices of opposite spin, both centered inside

1

the cylinder, at z=0 and at z=1/2.  
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ways the case since the total vorticity should not be changed by

the obstacle, and the method of images only adds singularities outside of the physical domain, within the obstacle
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) Complex velocity :

1 1 1 ( 1/ 2) ( 2) ( 2)( 1/ 2)
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) Blasius Theorem:  
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Expand the square in the integrand but only keep cross-terms that have simple poles at 0 and at 1/ 2
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2 is outside the integration contour), and find the residues:
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e > 0 (rightward) since velocity is the strongest (and hence pressure the lowest) closer to the vortex
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4) (30pts) 
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) Map vertices of the square:   w( 1) 1 2, w( ) 0
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Map centers of the sides:  w 1
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) Map is not conformal at 1 because w'( 1) 0; however w' '( 1) 0 (see below),

therefore we can expand to second order around 
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The images of the sides of the square are tangent to each other at w( 1) 2 (see Figure below)
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iii he circle maps to a real interval [ 2,2],  by the open set mapping theorem the interior (as well 

      as the exetrior) of the circle map to /[ 2,2] (open set = complex plane excluding [-2,2])
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5) (15pts extra credit)  This map is easier, since this square is tangent to the circle at the 
points of interest z=1 and z=i, therefore at these points the images of the sides of the 
square are tangent to the image of the circle, which is a horizontal real interval (note the 
horizontal tangent at w=2 and w=0).  At the images of the four vertices, w(1i)=3/2  i/2 
(note they map to the same points as the mid-points labeled in red in problem 4), the map is 
conformal, so the angle is preserved and equals π/2 

   


